All functions

Z_potts

Example objects from mrf2d

fourier_2d() polynomial_2d()

Creation of basis functions

bold5000

BOLD5000 neuroimaging data

cp_mrf2d()

Conditional probabilities in a pixel position

field1 hfield1

Example Data

dplot() cplot()

Plotting functions for lattice data

fit_ghm()

EM estimation for Gaussian Hidden Markov field

fit_pl()

Maximum Pseudo-likelihood fitting of MRFs on 2d lattices.

fit_sa()

Stochastic Approximation fitting of MRFs on 2d lattices

print(<hmrfout>) summary(<hmrfout>) plot(<hmrfout>)

MRF fitting functions output

mrf2d-family

Parameter restriction families

mrfi() rpositions() as.list(<mrfi>) length(<mrfi>) `[[`(<mrfi>,<numeric>,<missing>) `[`(<mrfi>,<numeric>,<missing>) `+`(<mrfi>,<numeric>) `-`(<mrfi>,<numeric>) `+`(<mrfi>,<mrfi>) `-`(<mrfi>,<mrfi>) mrfi_to_string()

mrfi: MRF interaction structure

print(<mrfout>) summary(<mrfout>) plot(<mrfout>)

MRF fitting functions output

pl_mrf2d()

Pseudo-likelihood function for MRFs on 2d lattices

plot(<mrfi>)

Plotting of mrfi objects.

rmrf2d()

Sampling of Markov Random Fields on 2d lattices

rmrf2d_mc()

Markov Chain sampling of MRFs for Monte-Carlo methods

smr_array() expand_array()

Summarized representation of theta arrays

smr_stat() cohist() vec_description()

Summary Statistics